Innovate UK @ eViz: Energy Visualisation for Carbon Reduction Preparing for an uncertain future

Innovate UK

Mark Wray

Lead Technologist Built environment

07825 112043 mark.wray@innovateuk.gov.uk @markinnovate

Interesting Times

Thinking about the future

Ruth McKernan, Chief Executive

UK R&D spending

CONCEPT

COMMERCIALISATION

5-point plan for future growth

- 1. Accelerating UK economic growth, nurturing small, high-growth companies, helping them to become high-growth mid-sized companies with strong productivity and export success.
- 2. Building on innovation excellence throughout the UK, investing locally in areas of strength.
- 3. Developing Catapults within a national innovation network, to provide access to cutting edge technologies, encourage inward investment and enable technical advances in existing businesses.
- 4. Working with the research community and across government to turn scientific excellence into economic impact, and improve efficiency.
- **5. Evolving our funding models;** exploring ways to help public funding go further.

1. Accelerating innovation; growing businesses

We have increased our focus on small, high-growth companies

2. Developing Catapults - within a network

With headquarters in Cambridge, the Precision Medicine Catapult will have regional centres in the north of England, Northern Ireland, Scotland, Wales & southern England.

Future nodes and connections are illustrative only

3. Building on regional and local excellence

Grant commitment by region, 2014-15 (compared to previous year)

Launchpads:

Driving SME innovation in clusters

2011 Tech City, London

2013 Space, Harwell

2013 Digital & creative, Glasgow

2013 Materials & manufacturing, NW

2013 Cybersecurity, Severn Valley

2014 Medical technology, Wales

2014 Tech City, London

2014 Motorsport, Midlands

2014 Process industries, NE

2015 Digital media, Edinburgh

4. Working with the research community

Targeting cancer with sound

- Spin-out from University of Oxford
- Commercialising research funded by EPSRC, NIHR and the Wellcome Trust
- Won Biomedical Catalyst funding to create a low-cost ultrasound device which targets drugs directly at tumours

5. Evolving our funding models

FIND

Research-led opportunities

Government-led opportunities

Business-led opportunities

GROW

Creating high growth potential SMEs

CATAPULT-centred scaling

SCALE

SME to mid-size, allowing new supply chains to form in UK

Delivery capability for industry and digital scale-up

What will the next five years look like?

Consolidated Catapult networks, bridging innovation to business

More globally-competitive medium sized science-based companies in strong clusters across the United Kingdom

Excellence in science being translated enthusiastically and across disciplines

Energy Visualisation

Past programme – Building Performance Evaluation

Supported product – Demand Logic

Future gazing

Building Performance Evaluation

£8m Innovate UK funding - 2010 to 2014

Projects are case study investigations of individual buildings or developments to:

- identify design and in-use factors that encourage good performance
- expose activities that contribute to poor performance
- explore lessons learnt by the domestic and non-domestic projects

Domestic:

53 projects(350 dwellings)

Non-domestic:

48 projects(55 study buildings)

We will be disseminating outcomes of the Building Performance Evaluation programme throughout 2015

4 principle emerging themes

- 1. Energy consumption is often much higher than design calculations suggest
- 2. Lack of client engagement
- 3. Challenges to occupants and building users

4. Low energy aspirations can influence system complexity

Tools and resources

connect.innovateuk.org/web/modernbuiltktn or search for Building Performance Evaluation

Energy perception and the performance gap

EPC's are only currently suitable for compliance checks and property valuations

- Building management collaboration
- Comfort & well-being
- Condition-based maintenance productivity
- Energy savings
- Smart commissioning and witnessing

www.demandlogic.co.uk

Chillers

Boilers

Ventilation plant / AHUs

Terminal units / FCUs

Pumps

Meters

Lighting

UPS / Battery

Building Management System (BMS)

Users

Owner Occupants Facility Manager Energy Manager **Building Services**

Insights

Energy Systems

Vision Mapping Project

The contribution visualization could make

Innovate UK

"Vision Mapping" project

- Develop a vision for the energy system experience of
 - What value add <u>functionality</u> might users value and be motivated by?
 - To stimulate the sector and inform funding strategy
- Blue sky....creative value add functionality harness all personal motivators types....to REALLY engaging end users
- Workshops Dec/Jan first theme
 - Energy functionality in commercial/public buildings

Energy Systems Definition

Social
Policy
Technology
Engineering
Regulation
Design
Business models
Etc...

End users
Energy suppliers
Network operators
Industry
System operator (s)
Building energy managers
Etc.....

- 1. Heat or cold
- 2. Light
- 3. Motive power
- 4. Power electronics
- 5. Data/ information
- 6. Control
- 7. £ ROI

Combinations of **ingredients and capabilities** that provide system **beneficiaries** with dynamic **functional** energy value propositions, that.....

- 1. Maximize the adoption of energy and carbon efficiency of solutions and methods at point of use
- 2. Manage uncertainty and balancing of energy need with energy availability
- 3. Engage users and other beneficiaries in more energy or carbon efficient participation in their use of energy

Energy systems opportunity pot for visualization

Personal motivators

- Comfort
- Emotional
- Financial
- Risk minimization/peace of mind
- Care for others
- Carbon & resource efficiency
- Minimal hassle/simplicity
- Fun

End users actual needs

- 1. Heat or cold
- 2. Light
- 3. Motive power
- 4. Energize electronics
- 5. Data/information
- 6. Control
- 7. £ ROI

Visualization potential...

What's it doing?
What's it about to do?
What's the trend?
What's it cost me so far?
Is it on or off?
Is it working as it should?

Where are there problems to be solved....

- Lack of knowledge or information
- Lack of control
- Inability to predict
- Wastage
- Silly bad habits
- Hassle/frustration
- Current crude solutions
- Poorly addressed issues of comfort

Its not just about end users!

- Energy managers
- Building services/maintenance
- Housing associations
- Security staff
- Cleaners
- Employees
- Even kids!

All could play a role in managing building energy better with the right visual tools

etc

Drawing these ingredients together

Functionality that visualization could play a role in

- 1. <u>A way of knowing when you flick switch how much cost/hour will then be incurred, (and vice versa)</u>
- 2. <u>A way of knowing how much energy cost/hour is being consumed in a room when you walk into it</u>
- 3. A way of knowing how much it just cost you to boil the kettle
- 4. A way of knowing how hot a a radiator is by looking at it (e.g. it glows red when hot)
- **5.** <u>A means</u> of mapping the personal comfort preferences of people that work in my companies office block so I can be spoke program our building system
- **6. A way** of visualizing waste heat in a production process
- 7. <u>A way of seeing high quality granular peer energy use, say in my village, maybe broken down by energy use type (e.g. lighting/heating/cooking/hot water), as a way of engaging real change</u>

Vision Mapping - Summary

- Visualization could make a significant contribution to the energy systems agenda
 - Both for end user engagement, AND
 - Benefit of other parties
- Vision mapping workshop Dec/Jan
 (+mini workshop at TEDDINET event 12 Oct)
- For further info on Vision Mapping project
 - mark.thompson@innovateuk.gov.uk
 - 07867 462690

